LT: I can write an arithmetic or a geometric sequences given a word problem.

1. What is the next number in this sequence?
 \[0.03, 0.12, 0.48, 1.92, ____\]
 (A) 1.95
 (B) 3.36
 (C) 5.08
 (D) 7.68

2. Which of the following is an arithmetic sequence?
 Sequence R: 1, 4, 7, 10, 13
 Sequence S: 1, 5, 25, 125, 625
 (A) R
 (B) S
 (C) R and S
 (D) None of the above

3. What is the next number in this sequence?
 \[2, 16, 128, 1024, ____\]
 (A) 1,920
 (B) 8,192
 (C) 11,256
 (D) 16,384

4. Which of these is the equation that generalizes the pattern of the data in the table?
 \[
 \begin{array}{c|c}
 x & f(x) \\
 \hline
 -3 & -5 \\
 -1 & 1 \\
 2 & 10 \\
 5 & 19 \\
 \end{array}
 \]
 (A) \(f(x) = 3x\)
 (B) \(f(x) = x + 3\)
 (C) \(f(x) = 2x + 6\)
 (D) \(f(x) = 3x + 4\)

5. As shown in the table, the monthly rent of an apartment depends on the number of bedrooms. If the pattern is extended, which of these is the likely cost of a 4-bedroom apartment?
 \[
 \begin{array}{c|c}
 \text{Bedrooms} & \text{Rent} \\
 \hline
 1 & $550 \\
 2 & $625 \\
 3 & $700 \\
 \end{array}
 \]
 (A) $715
 (B) $725
 (C) $750
 (D) $775

6. During a science experiment, Kyle counted the number of bacteria present in a petri dish after every minute. Assuming the pattern continues, how many bacteria will there be after 20 minutes?
 \[
 \begin{array}{c|c}
 \text{Number of Bacteria} & \text{Minute} \\
 \hline
 2 & 1 \\
 4 & 2 \\
 8 & 4 \\
 16 & 8 \\
 \end{array}
 \]
 (A) 1048576
 (B) 2097152
 (C) 320
 (D) 380

7. What is the missing term in the sequence below?
 \[-110, ____ , -146\]
 (A) -120
 (B) -130
 (C) -128
 (D) -140
8. Which sequence is arithmetic?
 a) 1, 1, 2, 3, 5, 8, ...
 b) 12, 7, 2, -3, -8, ...
 c) -2, 4, -6, 8, -10, ...
 d) -27, -9, -3, -1, $\frac{1}{3}$, ...

9. What sequence is generated by the equation $f(x) = -2x + 7$ for $x = 0, 1, 2, 3, \ldots$?
 A. 0, 7, 14, 21, 28, ...
 B. -2, 5, 12, 19, 26, ...
 C. 7, 5, 3, 1, -1, -3, ...
 D. 7, 9, 11, 13, 15, ...

10. What sequence is generated by the equation $f(x) = 9x - 5$ for $x = 0, 1, 2, 3, \ldots$?
 A. 0, 9, 18, 27, 36, ...
 B. -5, 4, 13, 22, 31, ...
 C. 9, 4, -1, -6, -11, ...
 D. -5, -14, -23, -32, -41, ...

11. What sequence is generated by the equation $f(x) = 4x + 1$ for $x = 0, 1, 2, 3, \ldots$?
 (A) 5, 6, 7, 8
 (B) -1, 0, 1, 2
 (C) 1, 5, 9, 13
 (D) 4, 5, 6, 7

12. The equation $f(x) = 5x - 3$ generates the arithmetic sequence -3, 2, 7, 12, 17, \ldots for $x = 0, 1, 2, 3, \ldots$ What is the 31st term in the sequence?
 A. 30
 B. 147
 C. 150
 D. 152

13. The equation $f(x) = -10x + 27$ generates the arithmetic sequence 27, 17, 7, -3, -13, \ldots for $x = 0, 1, 2, 3, \ldots$ What is the 26th term in the sequence?
 A. -287
 B. -277
 C. -233
 D. -223

14. Which equation can be used to generate the arithmetic sequence -7, -4, -1, 2, 5, 8, \ldots for $x = 0, 1, 2, 3, \ldots$?
 A. $f(x) = -3x - 7$
 B. $f(x) = 3x - 7$
 C. $f(x) = -7x + 3$
 D. $f(x) = 7x + 3$

15. Which equation can be used to generate the arithmetic sequence 54, 48, 42, 36, 30, \ldots for $x = 0, 1, 2, 3, \ldots$?
 A. $f(x) = 54x - 6$
 B. $f(x) = 6x - 54$
 C. $f(x) = -6x + 54$
 D. $f(x) = -6x - 6$

16. The equation $f(x) = 4.2x - 3$ represents an arithmetic sequence. What is the common difference between consecutive terms?
 A. -1
 B. 1
 C. 3
 D. 4.2

17. Which of the following best describes the arithmetic sequence 2, 5, 8, 11, 14, \ldots ?
 A. Not a function
 B. A linear function
 C. A function, but not linear
 D. $f(x) = 2x + 3$
18. Which sequence is geometric?
 a) 1, 1, 2, 3, 5, 8, ...
 b) 12, 7, 2, -3, -8, ...
 c) -2, 4, -6, 8, -10, ...
 d) -27, -9, -3, -1, -\frac{1}{3}, ...

19. What sequence is generated by the equation \(f(x) = -2(5)^x \) for \(x = 0, 1, 2, 3, \ldots \)?
 A. 5, 10, 20, 40, 80, ...
 B. -2, -10, -50, -250, -1,250, ...
 C. -2, 10, -50, 250, -1,250, ...
 D. -5, 10, -20, 40, -80, ...

20. What sequence is generated by the equation \(f(x) = 81(-\frac{1}{3})^x \) for \(x = 0, 1, 2, 3, \ldots \)?
 A. 81, 78, 75, 72, 69, ...
 B. -81, -27, -9, -3, -1, ...
 C. 81, 27, 9, 3, 1, ...
 D. 81, -27, 9, -3, 1, ...

21. Which equation can be used to generate the geometric sequence 3, 6, 12, 24, 48, 96, \ldots for \(x = 0, 1, 2, 3, \ldots \)?
 A. \(f(x) = 2(3)^x \)
 B. \(f(x) = 3(2)^x \)
 C. \(f(x) = 3(3)^x \)
 D. \(f(x) = 96(\frac{1}{2})^x \)

22. The equation \(f(x) = 128(\frac{1}{2})^x \) generates the arithmetic sequence 128, 64, 32, 16, 8, \ldots for \(x = 0, 1, 2, 3, \ldots \).What is the 10th term in the sequence?
 A. 1
 B. \frac{1}{2}
 C. \frac{1}{4}
 D. \frac{1}{8}

23. Which sequence is geometric?
 (A) 9, 7, 5, 3, 1, ...
 (B) 0.5, 1, 2, 4,
 (C) -9, -7, -5, -3, -1,
 (D) -4, -2, 0, 2, 4,

24. In the function \(f(x) = 3^x \), if a positive value of \(x \) is increased by 2, what is the effect on the value of the function?
 A. It is \(\frac{1}{3} \) the original amount.
 B. It is 6 times the original amount.
 C. It is 9 times the original amount.
 D. It is equal to the original amount.

25. Which of the following best describes the geometric sequence 2, 4, 8, 16, 32, 64, \ldots ?
 A. Not a function
 B. A linear function
 C. A function, but not linear
 D. \(f(x) = 2(\frac{1}{2})^x \)

26. Certain bacteria can double in number over 1 hour. Suppose a collection of 60 bacterium cells is placed in a petri dish. Which equation can be used to find how many cells, \(c \), there would be after \(x \) hours?
 A. \(c = 60(x)^2 \)
 B. \(c = 60(2)^x \)
 C. \(c = 2(60)^x \)
 D. \(c = 2(x)^{60} \)

27. Which equation can be used to generate the arithmetic sequence 54, 18, 6, 2, \frac{2}{3}, \ldots for \(x = 0, 1, 2, 3, \ldots \)?
 A. \(f(x) = 54(\frac{1}{3})^x \)
 B. \(f(x) = -54(\frac{1}{3})^x \)
 C. \(f(x) = 54(-\frac{1}{3})^x \)
 D. \(f(x) = 54(3)^\frac{1}{x} \)
<table>
<thead>
<tr>
<th>IF</th>
<th>Checking: p. 6-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 4</td>
<td></td>
</tr>
<tr>
<td>Is this sequence below arithmetic or geometric? How do you know?</td>
<td>Write an equation for the sequence. What is the 51st term?</td>
</tr>
<tr>
<td>1, 4, 16, 64, ...</td>
<td>(f(x) = 1(4)^x)</td>
</tr>
<tr>
<td>Geometric sequence</td>
<td></td>
</tr>
</tbody>
</table>
Geometric Sequence

\[f(x) = a(b)^x \]

1) \[4, 12, 36, 108, \ldots \]
 Rule for Sequence (b): \(\frac{3}{1} \)
 Starting Amount (a): \(4 \)
 Equation: \(f(x) = 4 \left(\frac{3}{1} \right)^x \)
 7th term: \(2916 \) (so \(x = 6 \) for the 7th term)

2) \[0.25, 0.5, 1, 2, \ldots \]
 Rule for Sequence (b): \(\frac{2}{1} \)
 Starting Amount (a): \(0.25 \)
 Equation: \(f(x) = 0.25 \left(\frac{2}{1} \right)^x \)
 7th term: \(10 \) (so \(x = 6 \) for the 7th term)

3) \[0.1, 0.2, 0.4, 0.8, \ldots \]
 Rule for Sequence (b): \(\frac{2}{1} \)
 Starting Amount (a): \(0.1 \)
 Equation: \(f(x) = 0.1 \left(\frac{2}{1} \right)^x \)
 7th term: \(0.0625 \) (so \(x = 6 \) for the 7th term)

4) \[8, 0.5, 0.125, \ldots \]
 Rule for Sequence (b): \(\frac{1}{2} \)
 Starting Amount (a): \(8 \)
 Equation: \(f(x) = 8 \left(\frac{1}{2} \right)^x \)
 7th term: \(\frac{1}{512} \) or 0.00195 (so \(x = 6 \) for the 7th term)

5) \[4, 16x, 64x^2, 256x^3, \ldots \]
 Rule for Sequence (b): \(4x \)
 Starting Amount (a): \(4 \)
 Equation: \(f(x) = 4 \left(\frac{4x}{1} \right)^x \)
 7th term: \(16,384x^6 \) (so \(x = 6 \) for the 7th term)

6) \[2, 2, 2, 2, \ldots \]
 Rule for Sequence (b): \(\frac{1}{1} \)
 Starting Amount (a): \(2 \)
 Equation: \(f(x) = 2 \left(\frac{1}{1} \right)^x \)
 7th term: \(2 \) (so \(x = 6 \) for the 7th term)
Geometric Sequences

\[f(x) = a \cdot b^x \]

7) \[1, \frac{1}{2}, \frac{1}{4}, \ldots \]
Rule for Sequence (b): \(\cdot \frac{1}{2} \)
Starting Amount (a): \(\frac{1}{2} \)
Equation: \(f(x) = \frac{1}{2} \cdot \left(\frac{1}{2} \right)^x \)

7th term: \(\frac{1}{2^{18}} = 0.00045 \)

(\(so \ X = \frac{1}{2} \) for the 7th term)

8) \[1, 2, 4, 8, \ldots \]
Rule for Sequence (b): \(\cdot 2 \)
Starting Amount (a): \(1 \)
Equation: \(f(x) = 1 \cdot (2)^x \)

7th term: \((2)^6 \)

(\(so \ X = 2 \) for the 7th term)

9) \[5, 5x^2, 5x^4, 5x^6, \ldots \]
Rule for Sequence (b): \(\cdot x^2 \)
Starting Amount (a): \(5 \)
Equation: \(f(x) = 5 \cdot (x^2)^x \)

7th term: \(5 \cdot (x^2)^6 \)

(\(so \ X = x^2 \) for the 7th term)

10) \[7, 35, 175, 875, \ldots \]
Rule for Sequence (b): \(\cdot 5 \)
Starting Amount (a): \(7 \)
Equation: \(f(x) = 7 \cdot (5)^x \)

7th term: \(109375 \)

(\(so \ X = 5 \) for the 7th term)

11) \[a^2, 2a^2, 4a^2, 8a^2, \ldots \]
Rule for Sequence (b): \(\cdot 2 \)
Starting Amount (a): \(a^2 \)
Equation: \(f(x) = a^2 \cdot (2)^x \)

7th term: \(a^2 \cdot 64 \)

(\(so \ X = 2 \) for the 7th term)

12) \[320, 80, 20, 5, \ldots \]
Rule for Sequence (b): \(\cdot \frac{1}{4} \)
Starting Amount (a): \(320 \)
Equation: \(f(x) = 320 \cdot \left(\frac{1}{4} \right)^x \)

7th term: \(320 \left(\frac{1}{4} \right)^6 \)

(\(so \ X = \frac{1}{4} \) for the 7th term)
13. Find the base of the right triangle below.

\[\frac{12}{15} \frac{7.5}{150} \frac{22.5}{8 \text{ cm}} \]

The triangle is not drawn to scale.

\[8^2 + x^2 = 17^2 \]
\[64 + x^2 = 289 \]
\[x^2 = 225 \]
\[x = 15 \]

14. The base of a ladder is placed 6 feet from a wall. The top of the ladder rests 8 feet up on the wall. How long is the ladder?

\[6^2 + 8^2 = x^2 \]
\[36 + 64 = x^2 \]
\[100 = x^2 \]
\[x = 10 \text{ feet} \]

15. Find the point of intersection by equation.

\[\begin{cases} y = 6 - 2x \\ y = 6 + 1.5(2x + 4) \end{cases} \]

\[6 - 2x = 3(2x + 4) \]
\[6 - 2x = 6x + 12 \]
\[6 + 2x = 6x + 12 \]
\[6 + 2(3) = 6x + 12 \]
\[6 + 6 = 6x + 12 \]
\[12 = 6x + 12 \]
\[12 - 12 = 6x \]
\[0 = 6x \]
\[0 = x \\ \frac{6}{6} \]
\[y = 7.5 \]

16. What is the slope between the two points (8, 3) and (8, -1)?

\[\frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{8 - 8} = \frac{-4}{0} \]

Undefined
<table>
<thead>
<tr>
<th>pg. #</th>
<th>Learning Targets</th>
<th>CW (teacher sign)</th>
<th>Practice assignment</th>
<th>Practice assignment (teacher sign)</th>
<th>Understanding?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>I can identify, write, and use a function for an arithmetic sequence.</td>
<td></td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-8</td>
<td>I can identify, write, and use a function for a geometric sequence.</td>
<td></td>
<td>6-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-11</td>
<td>I can write an arithmetic or a geometric sequence given a word problem.</td>
<td></td>
<td>9-11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correct mistakes

Enter answers in clicker
LT: I can write an arithmetic or a geometric sequences given a word problem.

1. What is the next number in this sequence?
 \[0.03, 0.12, 0.48, 1.92, \ldots\]
 (A) 1.95
 (B) 3.36
 (C) 5.08
 (D) 7.68
 D

2. Which of the following is an arithmetic sequence?
 Sequence R: 1, 4, 7, 10, 13, 16, 19
 Sequence S: 1, 5, 25, 125, 625
 (A) R
 (B) S
 (C) R and S
 (D) None of the above
 A

3. What is the next number in this sequence?
 \[2, 16, 128, 1024, \ldots\]
 (A) 1.920
 (B) 8.192
 (C) 11.256
 (D) 16.384
 B

4. Which of these is the equation that generalizes the pattern of the data in the table?
 \[
 \begin{array}{c|c}
 x & f(x) \\
 \hline
 -3 & -5 \\
 -1 & 1 \\
 2 & 10 \\
 5 & 19 \\
 \end{array}
 \]
 (A) \(f(x) = 3x\)
 (B) \(f(x) = x + 3\)
 (C) \(f(x) = 2x + 6\)
 (D) \(f(x) = 3x + 4\)
 D

5. As shown in the table, the monthly rent of an apartment depends on the number of bedrooms. If the pattern is extended, which of these is the likely cost of a 4-bedroom apartment?
 (A) $\$715$
 (B) $\$725$
 (C) $\$750$
 (D) $\$775$
 D

6. During a science experiment, Kyle counted the number of bacteria present in a petri dish after every minute. Assuming the pattern continues, how many bacteria will there be after 20 minutes?
 \[
f(x) = a \cdot b^x
 \]
 (A) \(1048576\)
 (B) \(2097152\)
 (C) \(320\)
 (D) \(380\)
 A

7. What is the missing term in the sequence below?
 \[-110, ___, -146\]
 (A) -120
 (B) -130
 (C) -126
 (D) -140
 C
8. Which sequence is arithmetic?

- [B] 1, 1, 2, 3, 5, 8, ...
- [C] -5
- [D] -2, 4, -6, 8, -10, ...
- [E] -27, -9, -3, -1, \(\frac{1}{3} \), ...

9. What sequence is generated by the equation \(f(x) = -2x + 7 \) for \(x = 0, 1, 2, 3, \ldots \)?

- [A] 0, 7, 14, 21, 28, ...
- [B] -2, 5, 12, 19, 26, ...
- [C] 7, 5, 3, 1, -1, -3, ...
- [D] 7, 9, 11, 13, 15, ...

10. What sequence is generated by the equation \(f(x) = 3x - 5 \) for \(x = 0, 1, 2, 3, \ldots \)?

- [A] 0, 9, 18, 27, 36, ...
- [B] -5, 4, 13, 22, 31, ...
- [C] 9, 4, -1, -6, -11, ...
- [D] -5, -14, -23, -32, -41, ...

11. What sequence is generated by the equation \(f(x) = 4x + 1 \) for \(x = 0, 1, 2, 3, \ldots \)?

- [A] 5, 6, 7, 8
- [B] -1, 0, 1, 2
- [C] 1, 5, 9, 13
- [D] 4, 5, 6, 7

12. The equation \(f(x) = 5x - 3 \) generates the arithmetic sequence -3, 2, 7, 12, 17, \ldots for \(x = 0, 1, 2, 3, \ldots \). What is the 31st term in the sequence?

- [A] 30
- [B] 147
- [C] 150
- [D] 152

13. The equation \(f(x) = -10x + 27 \) generates the arithmetic sequence 27, 17, 7, -3, -13, \ldots for \(x = 0, 1, 2, 3, \ldots \). What is the 26th term in the sequence?

- A. -287
- B. -277
- C. -233
- D. -223

14. Which equation can be used to generate the arithmetic sequence -7, -4, -1, 2, 5, 8, \ldots for \(x = 0, 1, 2, 3, \ldots \)?

- A. \(f(x) = -3x - 7 \)
- B. \(f(x) = 3x - 7 \)
- C. \(f(x) = -7x + 3 \)
- D. \(f(x) = 7x + 3 \)

15. Which equation can be used to generate the arithmetic sequence 54, 48, 42, 36, 30, \ldots for \(x = 0, 1, 2, 3, \ldots \)?

- A. \(f(x) = 54x - 6 \)
- B. \(f(x) = 6x - 54 \)
- C. \(f(x) = -6x + 54 \)
- D. \(f(x) = -6x - 6 \)

16. The equation \(f(x) = 4.2x - 3 \) represents an arithmetic sequence. What is the common difference between consecutive terms?

- A. -1
- B. 1
- C. 3
- D. 4.2

17. Which of the following best describes the arithmetic sequence 2, 5, 8, 11, 14, \ldots ?

- [X] Not a function
- [B] A linear function
- [X] A function, but not linear
- D. \(f(x) = 2x + 3 \)
18. Which sequence is geometric?
 a) 1, 1, 2, 3, 5, 8, ...
 b) 12, 7, 2, -3, -8, ...
 c) -2, 4, -8, 16, -32, ...
 d) -27, -9, -3, -1, \(\frac{1}{3} \), ...

19. What sequence is generated by the equation \(f(x) = -2(5)^x \) for \(x = 0, 1, 2, 3, \ldots \)?
 X. 5, 10, 20, 40, 80, ...
 B. -2, -10, -50, -250, -1250, ...
 C. -2, 10, -50, 250, -1250, ...
 X. -5, 10, -20, 40, -80, ...

20. What sequence is generated by the equation \(f(x) = 81(-\frac{1}{3})^x \) for \(x = 0, 1, 2, 3, \ldots \)?
 A. 81, 78, 75, 72, 69, ...
 B. -81, -27, 9, 3, 1, ...
 C. 81, 27, 9, 3, 1, ...
 D. 81, -27, 9, -3, 1, ...

21. Which equation can be used to generate the geometric sequence 3, 6, 12, 24, 48, 96, ... for \(x = 0, 1, 2, 3, \ldots \)?
 X. \(f(x) = 2(3)^x \)
 B. \(f(x) = 3(2)^x \)
 C. \(f(x) = 3(3)^x \)
 X. \(f(x) = 9(2)^x \)

22. The equation \(f(x) = 128(\frac{1}{2})^x \) generates the arithmetic sequence 128, 64, 32, 16, 8, ... for \(x = 0, 1, 2, 3, \ldots \). What is the 10\(^{th}\) term in the sequence?
 A. \(f(9) = 128(\frac{1}{2})^9 \)
 B. \(f(9) = 128(\frac{1}{2})^9 \)
 C. \(f(9) = 128(\frac{1}{2})^9 \)
 D. \(f(9) = 128(\frac{1}{2})^9 \)

23. Which sequence is geometric?
 (A) 9, 7, 5, 3, 1, ...
 (B) 0, 5, 1, 2, 4, ...
 (C) -9, -7, -5, -3, -1, ...
 (D) -4, -2, 0, 2, 4, ...

24. In the function \(f(x) = 3^x \), if a positive value of \(x \) is increased by 2, what is the effect on the value of the function?
 A. It is \(\frac{1}{3} \) the original amount.
 B. It is 6 times the original amount.
 C. It is 9 times the original amount.
 D. It is equal to the original amount.

25. Which of the following best describes the geometric sequence 2, 4, 8, 16, 32, 64, ... ?
 A. Not a function
 B. A linear function
 C. A function, but not linear
 D. \(f(x) = 2(\frac{1}{2})^x \)

26. Certain bacteria can double in number over 1 hour. Suppose a collection of 60 bacterium cells is placed in a petri dish. Which equation can be used to find how many cells, \(c \), there would be after \(x \) hours?
 A. \(c = 60x^2 \)
 B. \(c = 60(3)^x \)
 C. \(c = 2(60)^x \)
 D. \(c = 2(x)^60 \)

27. Which equation can be used to generate the arithmetic sequence 54, 18, 6, 2, \frac{2}{3}, ... for \(x = 0, 1, 2, 3, \ldots \)?
 A. \(f(x) = 54(\frac{1}{3})^x \)
 B. \(f(x) = -54(\frac{1}{3})^x \)
 C. \(f(x) = 54(-\frac{1}{3})^x \)
 D. \(f(x) = 54(\frac{2}{3})^x \)